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Fig. 8. Strain–time curves after impact.
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Fig. 9. Calculation model of PD simulation for SHPB test.
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Fig. 10. Strain–time curve of SHPB test obtained from PD simulation (V = 10 m/s).

In the concrete Brazilian disc SHPB test, the lengths of striker, incident and transmitter bars are 600 mm, 3200 mm and 1800 mm respectively, and the diameter of all 347 stainless steel bars is 74 mm. Measure the strain of two particular points with a distance of 1 m to the specimen in both the incident bar and the transmitter bar. The diameter of the plane Brazilian
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Fig. 11. Progressive failure process of a concrete Brazilian disc in SHPB test. (V = 10 m/s).
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Fig. 12. The final cracking patterns of an experiment [38] and the present simulation.
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disc is 74 mm. The material parameters of concrete are as follows: Young’s modulus E = 30 GPa, Poisson’s ratio m = 0.25, mass density q = 2400 kg/m3, critical tensile stretch s0 = 0.0018, and critical compressive stretch s0 = 1.0, which is proper for concrete Brazilian test in SHPB. The PD simulation is carried out using the improved PMB model with material point size of |Dx| = 0.0002 m for two-dimensional specimen and |Dx| = 0.0005 m for bars, a horizon size of d = 3|Dx| and a time-step of Dt = 5 10 8 s. The bars are totally discretized into 11,202 material points, while the specimen is discretized into 107,501 material points. The ‘boundary effect’ is mitigated by using the idea of determining the micromodulus constant with its actual integral neighborhood [37].

The peridynamic model is implemented using Fortran90 programming language in Visual Studio 2010, which currently runs only on a single processor computer. It takes approximately 8 h to solve the problem on a Lenovo Intel R CoreTM 4 CPU i5-2400 @ 3.1 GHz desktop computer with 4.00 GB. Fig. 10 shows the strain–time curves measured in the incident bar and transmitter bar with the impact velocity of 10 m/s. The incident wave, transmitter wave and reflected wave can be directly observed and saved.

The damage accumulation and progressive failure process of concrete Brazilian disc in SHPB with 10 m/s impact velocity are shown in Fig. 11. At the initial time of impact loading, a slight damage and fracture occurs in the contact area between concrete Brazilian disc and the incident bar, and between the transmitter bar and the specimen. Then, a main crack starts to initiate, propagate and coalesce from both ends of the specimen to the center along the radial direction. The specimen even-tually splits into two halves. At the same time, large damage areas and many micro-cracks nucleation and propagation occur to dissipate more energy. Fig. 12 shows a comparison between the experimental result [38] and the present simulated result, which are comparable. The simulation reproduces very well the progressive failure of a concrete specimen, and the PD simulation method for SHPB test is proven to be reasonable and applicable as well.

5. Conclusions

In this paper, two types of problems, the elastic wave dispersion and propagation in one dimension, as well as the impact failure of concrete Brazilian disc in SHPB test, are discussed with the bond-based PD. An improved PMB model considering an attenuation function of bond length and an implementation method of the contact-impact process are introduced.

The nonlocal long-range force controls the PD wave dispersion through different material point sizes and horizon sizes. The results demonstrate that the improved PMB model can reduce the numerical dispersion more effectively than the original PMB model and solve one-dimensional elastic wave propagation more accurately than original PMB model, although there is a little dispersion in wave speed. Further, the PD simulation can be used to observe the progressive failure of concrete Brazilian disc and obtain typical cracking patterns. The PD simulation method for SHPB test can be used to analyze the dynamic response of solids suffering impact load.

Although the calculated numerical strain–time curve resembles the measured curve, further verification by experiments is still needed in the future. Since the perfect matching impact between bars in SHPB test barely exists in reality, therefore, the imperfect impact should be another focus of the future studies. In addition, it should be of considerable interest to include the damping and plasticity in the constitutive model to reflect the dynamic response of material subjected to impact loading. Finally, it is also of significance to study the impact failure of Brazilian disc with different pre-existing cracks with our established approaches.
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